AI LabAI Lab

2022
7/
27

Edge AI Evangelist’s Thoughts Vol.22: Comparing the Carbon Footprint of Sparse Modeling and Deep Learning

ThisisHaruyukiTago,EdgeEvangelistatHACARUS’TokyoR&Dcenter.Inthisseriesofarticles,IwillsharesomeinsightsfrommydecadesofexperienceinthesemiconductorindustryandcommentonvariousAIindustry-relatedtopicsfrommyuniqueperspective.Intoday’svolume,Iwillexplainalittleaboutsparsemodelinganddeeplearningmethodsandcomparetheircarbonfootprints.Recently,SDGshavebecomeahottopicintoday'sbusinessenvironment,especiallyintheAIindustry.Whenlookingat…

2022
6/
27

Edge AI Evangelist’s Thoughts Vol.21: ARM vs RISC-V

Helloeveryone,thisisHaruyukiTago,EdgeEvangelistatHACARUS’TokyoR&Dcenter.Inthisseriesofarticles,IwillsharesomeinsightsfrommydecadesofexperienceinthesemiconductorindustryandIwillcommentonvariousAIindustry-relatedtopicsfrommyuniqueperspective.Intoday’svolume,Iwanttodiveintothemicroprocessorindustryoflogicintegratedcircuitsbeingusedincellphones,embeddeddevices,digitalhomeappliances,andotherbusinesses.Below,wewilldiscussthebusinessof…

2022
6/
10

Edge AI Evangelist’s Thoughts Vol.20: The Secrets of Apple’s M1 Ultra

Helloeveryone,thisisHaruyukiTago,EdgeEvangelistatHACARUS’TokyoR&Dcenter.Inthisseriesofarticles,IwillsharesomeinsightsfrommydecadesofexperienceinthesemiconductorindustryandIwillcommentonvariousAIindustry-relatedtopicsfrommyuniqueperspective.Intoday’svolume,IwanttopresentmyfindingsonApple’sM1UltramicroprocessorandMacStudioPC,whichwereannouncedinMarchof2022.Inthisarticle,Iwillcoverthespecificationsandperformance…

2022
4/
05

Edge AI Evangelist’s Thoughts Vol.19:  Analyzing Unconventional Logic Semiconductors – A Shift Away from Semiconductor Manufacturers

Helloeveryone,thisisHaruyukiTago,EdgeEvangelistatHACARUS'TokyoR&Dcenter.Inthisseriesofarticles,IwillsharesomeinsightsfrommydecadesofexperienceinthesemiconductorindustryandIwillcommentonvariousAIindustry-relatedtopicsfrommyuniqueperspective.Intoday’svolume,Iwillonceagaincoverthreemaintopics.First,IwilldiscusstheestimatednumberofserversusedbyAmazon,theworld’slargestonlineretailer,andwhyin-housedevelopmentisadvantageousfor…

2022
3/
23

Edge AI Evangelist’s Thoughts Vol.18: Decarbonizing AI development by a factor of 100 compared to Deep Learning AI

Helloeveryone,thisisHaruyukiTago,EdgeEvangelistatHACARUS'TokyoR&Dcenter.Inthisseriesofarticles,IwillsharesomeinsightsfrommydecadesofexperienceinthesemiconductorindustryandIwillcommentonvariousAIindustry-relatedtopicsfrommyuniqueperspective.Intoday’svolume,Iwilltrymybesttocoverthreetopics.Thefirstinvolvesexaminingthetransitionofcomputationalpowerduringmachinelearningtraining.ThesecondexploreswhythepowerconsumptionandCO2emissions…

2022
2/
07

Edge AI Evangelist’s Thoughts Vol.17: Measuring a Bluetooth Microcontroller’s Battery Life

Helloeveryone,thisisHaruyukiTago,EdgeEvangelistatHACARUS'TokyoR&Dcenter.Inthisseriesofarticles,IwillsharesomeinsightsfrommydecadesofexperienceinthesemiconductorindustryandIwillcommentonvariousAIindustry-relatedtopicsfrommyuniqueperspective.BatteryLifeModel&PredictionsforBluetoothMicrocontrollers Previouslyinvolume15oftheEdgeAIEvangelistThoughtsseries[1],IexploredusingaBluetoothLow-powerThermometerprogramusingthe‘Thunderboard’bySiliconlabs[2].…

2021
12/
28

Visualizing AI: PDP Reliability using d-ICE

IntroductionHelloeveryone,thisisYushiro,adatascientistatHACARUS. Thesedays,withlibrariessuchasScikit-learn,TensorFlow,andPyTorch,itisbecomingincreasinglyeasytocreatemachinelearningmodelsusingdata.Thesemodelsarecommonlyusedtomakepredictionsfornewdatabasedondatafromthepast. However,asthesemodelsbecomemorecomplex,theissuesofblack-boxingbecomemoreprevalent.Thismakesitdifficultforuserstounderstandthereasoningbehindthemodel’sdecision-making.Black-boxingis…

Subscribe to our newsletter

Click here to sign up